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Wavelets for the study of intermittency
and its topology

By F. Nicolleau† and J. C. Vassilicos
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

We make a distinction between two topologically different types of intermittency:
isolated, as in spirals, and non-isolated, as in fractals. For a broad class of isolated
and a broad class of non-isolated intermittent topologies, the flatness F (r) of velocity
differences and the eddy capacity DE obtained from a wavelet analysis are related
by

F (r) ∼ rDE−1.

Inertial range intermittency is such that DE � 0.94 and F (r) ∼ r−0.11 for jet turbu-
lence with Reλ = 835 and for grid turbulence with Reλ = 3050.

Keywords: fractals; spirals; singularities; intermittency; wavelets; turbulence

1. Introduction

The intermittency of a statistically homogeneous signal u(x) is often characterized
by the flatness (Batchelor 1953; Frisch 1995),

F (r) =
〈∆u4(r)〉
〈∆u2(r)〉2 , (1.1)

where ∆u(r) = u(x + r) − u(x), the brackets 〈. . . 〉 denote an average over x. A
signal is often said to be intermittent when F (r) increases with decreasing r. This is
because an intermittent signal displays activity (in the sense that ∆u is significantly
non-zero) over only a fraction of space (or time) x, and this portion decreases with
the scale r under consideration. However, such a property does not shed much light
on the actual topology of the signal’s intermittency. In this paper we use the wavelet
transform to study what intermittency can actually look like in space, how we can
measure its geometry, and we introduce a distinction between two different topologies
of intermittency.

These different topologies can give rise to the same flatness properties. When
the signal u(x) is statistically scale invariant, then we may talk of scale-invariant
intermittency and F (r) must have a power-law dependence on r, i.e.

F (r) ∼ r−q. (1.2)

This power q is a global statistical quantity, but we show that it is determined by
the local geometry of the intermittency of the signal. The geometry of a signal and
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the degree to which this geometry is space filling are usually studied in terms of
Kolmogorov capacities (fractal or box dimensions) of zero-crossings of the signal.
However, we show here that the geometry of the intermittency of the signal is best
captured by the zero-crossings of the second derivative of the signal, and that the
Kolmogorov capacity of these zero-crossings can determine q.

2. Intermittency and eddy capacity

The zero-crossings of the second derivative (d2/dx2)u(x) are related to both the
geometry and the statistics of the intermittency of the signal u(x). The signal u(x)
being assumed statistically homogeneous, nth-order moments 〈|∆u(r)|n〉 can, there-
fore, be calculated as follows (see Frisch 1995):

〈|∆u(r)|n〉 = lim
T→∞

1
T

∫ T

0
|u(x + r) − u(x)|n dx. (2.1)

In the limit where r → 0, ∆u(r) = u(x+r)−u(x) is extremal at inflection points of the
signal u(x), that is, at points where (d2/dx2)u(x) = 0. In those cases where |∆u(x)|
has the same order of magnitude at all these inflection points, we can estimate that

〈|∆u(r)|n〉 ∼ |∆u(r)|nrME(r), (2.2)

where ME(r) is the minimum number of segments of size r needed to cover the
zero-crossings of (d2/dx2)u(x) per unit length. If the signal u(x) is statistically scale
invariant, then ME(r) has a power-law dependence on r, and this power-law depen-
dence defines the eddy capacity DE as follows:

ME(r) ∼ r−DE . (2.3)

Hence, DE is the Kolmogorov capacity of the zero-crossings of (d2/dx2)u(x), and
note that 0 � DE � 1. From (2.2) and (2.3),

〈|∆u(r)|n〉 ∼ |∆u(r)|nr1−DE ,

and the r dependence of non-dimensionalized structure functions is given by

〈|∆u(r)|n〉
〈|∆u(r)|2〉n/2 ∼ r(1−DE)(1−(n/2)). (2.4)

For n = 4 we obtain

F (r) ∼ rDE−1, (2.5)

and a comparison of (2.5) with (1.2) gives

q = 1 − DE. (2.6)

These conclusions are similar to the results of the β-model,

〈|∆u(r)|n〉
〈∆u2(r)〉n/2 ∼ r(1−D)(1−(n/2)),

where D is a fractal dimension defined in terms of the volume fraction p(r) of eddies
of size r (see Frisch 1995). However, in the β model, the concept of an eddy of size
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r remains abstract and no operative definition is given by which to identify and
measure an eddy of size r.

In this respect, the situation is radically different here. An operative definition is
given by which to measure DE in terms of accessible properties of the signal, the
inflection points of the signal. These properties are indirectly accessible in practice
if use is made of a wavelet transform,

ũ(x0, a) = a−3
∫

u(x)ψ∗
(

x − x0

a

)
dx, (2.7)

of the signal u(x), where ψ(x) is the ‘mother’ wavelet (ψ∗ its complex conjugate).
The first relatively minor advantage in using a wavelet transform is of avoiding
calculation of double derivatives of the signal. This is explained in the next paragraph.
The second major advantage in using a wavelet transform is that it can provide an
estimate of the importance of the drop in u(x) at scale r across the inflection point.
This is explained in conclusion (v) in § 3.

The wavelet transform is a function of position x0 and length-scale a. Choosing
the mother wavelet in (2.7) to be a Mexican hat, that is

ψ(x) =
d2

dx2 e−x2/2,

the zeros of ũ(x0, a) tend towards zeros of (d2/dx2)u(x0) as a → 0. Hence, the eddy
capacity DE can be measured in practice as follows: a Mexican hat wavelet transform
ũ(x0, a) is performed on the signal u(x) and a box-counting algorithm is applied on
the zero-crossings of ũ(x0, a) for the smallest scale a permitted by the discretization.
The box counting yields ME(r) and an eddy capacity is well defined if ME(r) ∼ r−DE

over a significant range of scales. This wavelet-box-counting algorithm to measure
DE is applied successfully in the following section to test the validity of F (r) ∼ rDE−1

against a variety of test signals. We have checked in all cases that the value of DE
can be obtained unchanged from the zero-crossings of ũ(x0, a) for many values of a
even larger than the discretization.

In this paper, we restrict ourselves to the study of scale-invariant intermittency for
which DE > 0. (See the appendix for a short discussion of the differences between
DE and the Kolmogorov capacity D′

K of the zero-crossings of the signal u(x) itself.)

3. Validity of F (r) ∼ rDE−1

Hunt & Vassilicos (1991) emphasize that signals with power spectra E(k) ∼ k−2p,
where p < 1 (such as Kolmogorov’s k−5/3), must contain singularities (or rather near-
singularities if we take into account small-scale smoothing effects such as those of
viscosity or diffusivity) that are worse than mere isolated discontinuities in the signal
or its derivatives. These singularities can be qualitatively classified as follows (Hunt
& Vassilicos 1991): isolated cusp singularities such as 1/x; isolated accumulating
singularities such as sin(1/x) (see figures 4b and 5); and non-isolated singularities such
as can be found in fractal signals (see figures 1, 4a, 7a and 8b). Simple models of small-
scale turbulence structure have been proposed for each one of these singularities:
the Burgers vortex (see Batchelor 1967) has a point vortex near-singularity that is
a cusp near-singularity; the Lundgren vortex (Lundgren 1982) has a spiral-vortex-
sheet near-singularity that is an isolated accumulating near-singularity; and fractal
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and multifractal models of turbulence, such as the β model and its generalizations
(see Frisch 1995), assume the existence of non-isolated singularities.

We test the validity of (2.5) numerically on several model signals u(x), some reg-
ular and others scale invariant, with qualitatively different types of singularity. The
conclusions are outlined below.

(i) For continuous signals with continuous derivatives, for signals with isolated
discontinuities in the signal itself or its derivatives, and for isolated cusps,
DE = 0 and F (r) = const.

This conclusion implies that signals in which DE 	= 0 or F (r) 	= const. must
necessarily have either isolated accumulating singularities or non-isolated singulari-
ties, thus leading to a topological classification of intermittency for which DE 	= 0:
isolated intermittency when the intermittent signal carries isolated accumulating sin-
gularities but no non-isolated singularities; and non-isolated intermittency when the
intermittent signal carries non-isolated singularities.

It should be noted, however, that isolated accumulating singularities with DE = 0
and F (r) = const. are possible, e.g. u(x) = sin(e1/x), and that non-isolated singular-
ities with DE = 0 are also possible.

(ii) For fractal signals with F (r) = const., DE = 1 irrespective of the power spec-
trum’s scaling.

There exists a class of fractal signals (non-isolated singularities) for which

F (r) = const. and DE = 1,

irrespective of their power spectrum’s scaling, E(k) ∼ k−2p. Examples of such fractal
signals are the Weierstrass function,

u(x) =
∑
j�1

λ(α−2)j sin(λjx), (3.1)

where λ > 1 and 1 < α < 2 (figure 1a); the random-phase fractal signal obtained by
replacing sin(λjx) with sin(λjx + φj) in (3.1), where φj is a random phase between
0 and 2π (figure 1b); and the sum of centred sinusoids,

u(x) =
∑
j�1

λ(α−2)j sin(λjπx), (3.2)

where λ is an integer and 1 < α < 2 (figure 1c). For all these signals, and irrespective
of the values of λ and α that determine the power spectrum (see Falconer 1990), we
find that DE = 1 and F (r) = const. (figure 2).

(iii) However, there exist signals with non-isolated singularities for which F (r) ∼
r−q but DE = 1.

This is the case of the function u(x) defined in Benzi et al . (1993) (see figure 3) as

u(x) =
15∑

j=0

2j−1∑
k=0

αi,jΨ(2jx − k), (3.3)
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Figure 1. Non-intermittent signals. (a) The Weierstrass function (3.1) (here λ = α = 1.5 and
j � 30). (b) The random-phase function (here λ = α = 1.5 and j � 30). (c) The centred sinusoid
function (3.2) (here λ = 3, α = 1.5 and j � 25). These are signals with non-isolated singularities
and are such that DE = 1 (see figure 2).
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Figure 2. Comparison of (i) rDEME(r) and (ii) r1−DEF (r) as functions of r; ME(r) is the
minimum number of segments of size r needed to cover the zero-crossings of (d2/dx2)u(x) per
unit length. (a) Weierstrass function; (b) random-phase function; (c) centred sinusoid function.
We have set DE = 1 in all these graphs to demonstrate that DE = 1 in all the cases presented
in figure 1.
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Figure 3. (a) Function with non-isolated singularities defined by (3.3), for which F (r) ∼ r−0.27

but DE = 1. The probability density function of η is P (η) = yη0 + (1 − y)η1 with y = 0.2924,
η0 = 0.70, η1 = 0.45, σ = 0.18. (b) Plot of rDEME(r) against r for this function, where we have
set DE = 1.

where

Ψ(x) = − ∂2

∂x2 e−(x2)/(2σ2), αj,k = εj,kηj,kαj−1,k/2,

the ηj,k are independent random variables and εj,k = ±1 with equal probability. For
this function u(x), there exist sets of random variables ηi,j for which F (r) ∼ r−q

with q 	= 0 (Benzi et al . 1993), but we invariably find that DE = 1.

(iv) If DE is well defined and DE < 1 and if F (r) = r−q, then q = 1 − DE for a
broad class of isolated and a broad class of non-isolated intermittent topologies.

Let us start with the restricted class of on–off signals, such as those pictured in
figure 4. These signals take one of two values, say −1 and +1. They can have either
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Figure 4. Intermittent signals with non-isolated (a) and isolated (b) singularities. (a) The Cantor
dust on–off function (here, D′

K = DE = ln 2/ ln 3). (b) On–off signal (3.4) (here, D′
K = DE = 1

3 ).

isolated intermittency, as in the function

u(x) = H(sin(x−t)) − H(− sin(x−t)) (3.4)

(figure 4b), where H is the Heaviside function, or non-isolated intermittency as in the
well-known Cantor set (figure 4a). When the set of points where the signal abruptly
changes value is characterized by a well-defined Kolmogorov capacity D′

K, the flatness

F (r) ∼ rD′
K−1.

This result has been derived analytically by Vassilicos (1992) for on–off signals with
either isolated accumulating singularities or non-isolated singularities. On–off signals
are such that DE = D′

K because the zero-crossings of the second derivatives of such
signals are the same as the zero-crossings of the signal itself. It is therefore an analyt-
ical result† that for on–off signals with either isolated or non-isolated intermittency:

F (r) ∼ rDE−1.

For these on–off signals, the assumption made in (2.2), that |∆u(x)| has the same
order of magnitude at all the inflection points, is indeed verified. However, we find
that F (r) ∼ rDE−1 is valid even beyond this assumption. The following numerical
examples demonstrate that F (r) ∼ rDE−1 is valid more generally when |∆u(x)| does
not have too strong a dependence on x, in the cases of both isolated and non-isolated
intermittency.

An example of a family of signals with isolated intermittency for which this
assumption is not verified (unless s = 0) is (see figure 5a–c)

u(x) = xs sin(x−t). (3.5)

The Fourier power spectrum is well defined when −1 � 2s � t and t > 0. For these
signals, F (r) ∼ r−q and q = 1 − DE (figure 6a, b) provided that −1 � 2s � t and
t > 0. However, if the cusp singularity superimposed onto the isolated accumulation
is too strong, that is if s is too negative (i.e. if 2s < −1) as in the example of figure 5c,
then q 	= 1 − DE (figure 6c).

† More generally, the analytical results of Vassilicos (1992) imply that (2.4) holds for all values of n
when the signal is on–off.
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Figure 5. Isolated intermittency for different spiral functions: (a) sinx−1/2 (D′
K = DE = 1

3 );
(b) x1/2 sinx−1 (D′

K = DE = 1
2 ); (c) x−1 sinx−1 (D′

K = 0.5, DE = 0.6).
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Figure 6. Comparison of (i) rDEME(r) and (ii) r1−DEF (r) as functions of r, for the signals with
isolated intermittency of figure 5. (a) The function sinx−1/2 (we set DE = 1

3 ). (b) The function
x1/2 sinx−1, (we set DE = 1

2 ). (c) The function x−1 sinx−1 (we set DE = 0.6) and the absence
of plateaux indicates here that F (r) ∼ rDE−1 is not valid. The plateaux in (a), (b) indicate that
F (r) ∼ rDE−1 is valid for these functions.

The non-isolated intermittency of figure 7a is constructed on the basis of a Cantor
set of points of Kolmogorov capacity D′

K but differently: the value of the signal
between two consecutive such points is lσ, where l is the distance between these
two points and σ is a real number. This is also a signal where |∆u(x)| depends on
x. Nevertheless, F (r) ∼ rDE−1 is valid for this signal too (figure 7b) provided that
σ > −1

2 .
However, there exist examples of isolated and non-isolated intermittency where

F (r) ∼ rDE−1 is not valid even for arbitrarily weak dependencies of |∆u(x)| on x.
This is the case for the isolated intermittencies of figures 5c and 8a, and for the
non-isolated intermittency of figure 8b. The signal of figure 8a is based on the zero-
crossings of signals (3.4) and (3.5), which are given by xn = (nπ)−1/t, n being a
positive integer. This signal (figure 8a) is defined as follows:

u(x) =
∑
n�1

(ln)σH(x − xn+1)H(xn − x), (3.6)

where ln = xn − xn+1 and σ is a real number. For such signals, F (r) ∼ r−q but
q 	= 1 − DE, irrespective of the value of σ. Furthermore, figure 8b is a Devil’s stair-
case constructed on a Cantor set of points of Kolmogorov capacity D′

K (see, for
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Figure 7. (a) The non-isolated intermittent signal described in conclusion (iii) (here, σ = 0.25
and DE = 0.7). (b) (i) r1−DEF (r) and (ii) rDEME(r) for this signal; the ratio of the largest to
the smallest scale is 6500. F (r) ∼ rDE−1 is verified, but, due to the properties of lacunarity of
this signal, r1−DEF (r) exhibits strong oscillations. rDEME(r) keeps its plateau shape on the
large scales, whereas r1−DEF (r) loses its precision on these scales.

2

3

4

5

6

0.02 0.04 0.06 0.08 0.10 0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 8. Different signals with isolated (a) and non-isolated (b) intermittency for which
F (r) ∼ rD∗

E−1 is verified but F (r) ∼ rDE−1 is not verified. (a) Stair function (3.6) based on
the zero-crossings of sinx−1 (here, D∗

E = 0.65, σ = 0.2). (b) Devil’s staircase (here, D∗
E = 0.7

with 2000 for the ratio of the largest to the smallest scale).

example, Frisch 1995), and for this case of non-isolated intermittency, we also find
that F (r) ∼ r−q, but q 	= 1 − DE.

The definition of DE can be refined in such a way that q = 1 − DE can be made
valid for these last two types of signals too.

(v) The definition of DE can be refined using additional information from wavelet
transforms to extend the domain of validity of F (r) ∼ rDE−1.

The wavelet transform ũ(x0, a) of the signal u(x) is

ũ(x0, a) = a−3
∫

u(x)ψ∗
(

x − x0

a

)
dx,

and if the ‘mother’ wavelet is a Mexican hat, that is if

ψ(x) =
d2

dx2 e−x2/2,
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Figure 9. Plots of (i) r1−D∗
EF (r) and (ii) rD∗

EME(r) as functions of r. (a) Case 8a (we set
D∗

E = 0.65). (b) Devil’s staircase with a scale ratio of 2000 (we set D∗
E = 0.7). F (r) ∼ rD∗

E−1 is
verified for both cases, but, for the signal in figure 8b, r1−D∗

EF (r) exhibits strong oscillations due
to the properties of lacunarity of this signal; note that in this case rD∗

EME(r) keeps its plateau
shape on the large scales, whereas r1−D∗

EF (r) loses its precision on these scales.

then the zeros of ũ(x0, a) tend towards zeros of (d2/dx2)u(x0) as a → 0. Zero-
crossing curves of ũ(x0, a) in the x0–a plane start at a point (x′

0, amax), and, as a
is decreased towards a = 0, end at a point (xI, 0), where (d2/dx2)u(xI) = 0. Hence,
a characteristic length-scale amax is assigned to every inflection point xI, and it is
therefore possible to define turbulent eddies that are positioned at xI and that have
a size and intensity related to amax (see Kevlahan & Vassilicos 1994). The minimum
number M∗

E(r) of segments of size r needed to cover the inflection points xI with
amax � r (this sole condition differentiates M∗

E(r) from ME(r)) gives a measure of
the number of eddies of size larger than r, and an eddy capacity D∗

E can be defined
if the signal is self-similar, in which case

M∗
E(r) ∼ r−D∗

E . (3.7)

Clearly, M∗
E(r) � ME(r). Furthermore, there can exist no inflection point xI for

which amax = 0. This is because zero-crossings of ũ(x0, a) tend towards all zero-
crossings of (d2/dx2)u(x0) as a → 0, and, therefore, if an inflection point xI existed
for which amax = 0, this inflection point could not be approached continuously by
zeros of ũ(x0, a) as a → 0. Hence, there exists a minimum value of amax, which we
call amin, and which is different from zero. Noting that

M∗
E(amin) = ME(amin),

M∗
E(r) = M∗

E(amin)(r/amin)−D∗
E ,

ME(r) = ME(amin)(r/amin)−DE ,

we obtain

(r/amin)−D∗
E � (r/amin)−DE , (3.8)

for r/amin � 1, and we therefore conclude that

D∗
E � DE. (3.9)
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Table 1. Different eddy capacities and flatness factors of the signals in
figures 1, 4, 5, 7a, 8 and 12

(DE is the Kolmogorov capacity of the zero-crossings of (d2/dx2)u(x); D∗
E is computed using

the refined definition (3.7) based on the wavelet transform (2.7).)

figure type D∗
E DE F (r)

1a non-isolated 1 1 rDE−1 ∼ 3
1b non-isolated 1 1 rDE−1 ∼ 2
1c non-isolated 1 1 rDE−1 ∼ 3

4a non-isolated 0.63 0.63 6 �= rDE−1

5c non-isolated 0.6 0.5 r1/6 �= rDE−1

3a non-isolated 1 1 r−0.27

5a isolated 0.33 0.33 rDE−1

5b isolated 0.50 0.50 rDE−1

4b isolated 0.33 0.33 rDE−1

8a isolated 0.65 0.5 rD∗
E−1

7a non-isolated 0.7 0.63 rD∗
E−1

8b non-isolated 0.7 0.7 rDE−1

12a jet 0.92 — r−0.11

12b wind-tunnel 0.95 — r−0.11

D∗
E is a refined definition of an eddy capacity, which, unlike DE, takes into account

the intensity of |∆u| at inflection points xI in such a way that

F (r) ∼ rD∗
E−1

is valid over a wider class of signals than

F (r) ∼ rDE−1.

In particular, we find numerically that D∗
E = DE in all the cases where we find

that q = 1−DE (see table 1). For signals of type (3.6) (figure 8a) and for the Devil’s
staircase (figure 8b), D∗

E > DE and q = 1 − D∗
E, whereas q 	= 1 − DE (see figure 9).

In the remainder of this paper (including figures), the eddy capacity is invariably
defined in terms of the more refined wavelet algorithm giving D∗

E, which is in fact a
very practical tool for computing the eddy capacity, and we replace the notation D∗

E
by DE for the sake of simplicity.

(vi) In the absence of noise, DE is a better measure of intermittency than F (r).

Our conclusions (iv) and (v) can be summarized with the statement that F (r) ∼
rDE−1 for a broad class of isolated and non-isolated intermittent topologies.

We now find that DE is a better measure of intermittency than F (r) in the absence
of noise. We deal with the problem of noise in § 4.

In all the model signals in which we find that F (r) ∼ rDE−1, DE appears to be
a more sensitive measure of intermittency than F (r) in two respects. Firstly, the
measurement of DE only requires a well-resolved, but relatively small, part of the
signal, whereas F (r) needs large amounts of data to converge. Secondly, F (r) is
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Figure 10. Comparison of the accuracy of DE and F (r). (a) Devil’s staircase with a ratio of scales
of only 81 (DE = 0.7). (b) Case 7a with a ratio of scales of only 2000 (DE = 0.7). (i) rDEM(r)
keeps its plateau shape in both (a) and (b), whereas (ii) r1−DEF (r) exhibits no plateau slope in
(a) and does but on a very limited range of scales in (b).

more sensitive than DE to the outer cut-off scale of the self-similar range and can
exhibit oscillations (Smith et al . 1986). In all our model signals, DE remains well
defined and accurate even close to the outer cut-off scale, whereas F (r) does not.
This means that F (r) needs a larger self-similar range of scales than DE to ensure a
good accuracy on the measurement of the power law. Typically, the ratio of the outer
cut-off (sampling size) to the inner cut-off (resolution) needs to be of the order of
10–100 for an accurate measurement of DE. Whereas, a ratio of 100 is not enough for
the dependence of F (r) on r to reach its asymptotic form. This is particularly clear
in the comparison of figures 7b, 9b and 10, which display the measurement of DE and
F (r) for the signals of figures 7a and 8b. These two signals are fractal constructions,
and a fractal resolution is defined by the ratio of the outer cut-off to the inner cut-
off scales of the fractal process. The highest resolution is that of figures 7b and 9b,
and the smallest that of figure 10 (see figure captions for details), and it turns out
that DE is accurately measured and well defined for both resolutions, whereas the
r dependence of F (r) is closer to its asymptotic form only in the cases of figures 7b
and 9b, where the resolution is best.

Particularly striking are the cases of some fractal on–off signals where we know
that F (r) ∼ rDE−1 analytically (see figure 4a). The numerical results obtained for
various resolutions indicate that F (r) does not exhibit, in practice, its asymptotic
form rDE−1 unless the resolution is really extraordinary. Nevertheless, DE is always
well defined even for low resolutions of the fractal on–off structure, and is found, as
expected, to be equal to D′

K, the Kolmogorov capacity of the set of points where
the signal changes values. Of course, this class of intermittent signals is extreme in
that these signals are equal to, say, zero nearly everywhere except on a fractal set (a
Cantor set in the case of figure 4a). Nevertheless, DE can capture the intermittency
even in such extreme situations, whereas F (r) cannot do so except if the resolution
is enormous (see figure 11a).

Hence, in the absence of noise, as is the case of all our model signals, DE requires
smaller datasets and smaller self-similar ranges than F (r) to be determined accu-
rately. However, in the presence of even a small amount of noise, a direct measure-
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Figure 11. Plots of rDEME(r) (dashed line) and r1−DEF (r) (solid line) as functions of r for the
two signals in figure 4. (a) Cantor dust on–off function, DE = 0.63. (b) On–off spiral signal,
DE = 1

3 ; the plateau is observed, indicating that F (r) ∼ rDE−1.
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Figure 12. Experimental one-point turbulent velocity signals from Modane. u against time.
(a) Jet turbulent velocity. (b) Wind-tunnel turbulent velocity (see table 2.)

ment of DE gives DE = 1 irrespective of the underlying intermittent structure onto
which the noise is superimposed (Kevlahan & Vassilicos 1994). In the following sec-
tion, we show how to make DE robust to the presence of noise, and we measure the
eddy capacity DE and flatness F (r) of the two one-point turbulent velocity signals
of figure 12.

4. Application to high resolution turbulent velocity signals

Signals measured in practice always contain some noise strongly affecting their eddy-
capacity measurement. To deal with this problem, we propose to replace the direct
measure of the eddy capacity on the measured signal umeas(x) by a measure on a
‘distilled’ signal uJ(x) extracted from the measured signal. Our aim is to discard in
this intermediary signal uJ(x) the effect of noise and retrieve part of the structure
of the underlying signal u(x) (that is the ideal physical signal without noise). To
construct this intermediary signal, we start by defining a series of increasing thresh-
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Figure 13. (a) uJ(x) in case 12b with J = 8, based on the 8192 first points that correspond to
0 < x < 0.114. (b) rDEME(r) measured on figure 12a, b with J = 8, as functions of r, DE = 0.95.

olds U0, U1, U2, . . . , UJ evenly spaced between the minimum and maximum values
(umin and umax) of the measured signal umeas(x) (Uj = umin + j[(umax − umin)/J ]
for j = 0, . . . , J). The points xi, where umeas(xi) equals one of these thresholds, say
umeas(xi) = Uj , are given in increasing order (xi < xi+1) and so that umeas(xi+1)
equals either Uj+1 or Uj−1. The intermediary signal is defined as follows:

uJ(x) =
∑
i�J

umeas(xi)(H(x − xi) − H(x − xi+1)). (4.1)

Figure 13a shows this construction for the experimental signal of figure 12b with
J = 7.

The measured signal umeas(x) results from the superimposition of noise on u(x).
We may express this noise in the form ε(x)u(x), where ε(x) is a dimensionless random
function of x, in which case

umeas(x) = u(x)(1 + ε(x)). (4.2)

We can then compute the quantity ME(r) both for the measured signal umeas(x)
and for each intermediary signal uJ(x), and from now on we restrict the notation
ME(r) to the signal without noise u(x) and use Mmeas

E (r) and MJ
E (r) for, respectively,

the measured signal umeas(x) and the intermediary signal uJ(x). The construction
of the intermediary signals introduces a new scale rJ

min = min(|xi+1 − x1|), below
which uJ(x) contains no information about umeas(x). Hence, any measurement’s noise
below rJ

min is not in uJ(x). The computation of MJ
E (r) is based on the algorithm

introduced in conclusion (v) of § 3, for which only zero-crossing curves (in the x0–a
plane) of ũJ(x0, a) with amax > r are counted in MJ

E (r). Any zero-crossing curves
of ũmeas(x0, a) caused by noise and such that amax < rJ

min, are, therefore, eliminated
from the calculation of MJ

E (r) for r > rJ
min. One may expect that the remaining zero-

crossing curves that are taken into account in the calculation of MJ
E (r) are those

of ũmeas(x0, a) with amax � r > rJ
min, along with a few extra zero-crossing curves

introduced by the discontinuous nature of the construction of uJ(x) itself. But we
conjecture that for sufficiently large rJ

min, that is sufficiently small J , the procedure
by which we construct uJ(x) effectively removes noise even at scales larger than rJ

min,
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so that the zero-crossing curves that are counted in the calculation of MJ
E (r) are in

fact those of ũ(x0, a) with amax � r > rJ
min, along with the extra zero-crossing curves

introduced by the construction of uJ(x). On this basis we can write

ME(r) � MJ
E (r) � Mmeas(r),

for r > rJ
min, and we may conclude that where eddy capacities are well defined,

DE � DJ
E � Dmeas

E ,

with obvious notation. To validate the above conjecture, we verify the inequality

DE � DJ
E � Dmeas

E ,

on three different types of signals, each with a different singularity structure: fractal
(figure 14a), spiral (figure 14c) and spirals on a fractal set (figure 14e). We also verify
on these signals that where DJ

E is constant over a range of J , then DE = DJ
E for

these values of J , and where DJ
E is not constant for a range of J , DE < DJ

E. Finally,
we also verify that the maximum value of J for which DJ

E � Dmeas
E may be expected

to hold is determined by the requirement that Ujεmax < Uj+1 − Uj for all j, which
implies that

J < [(umax − umin)/umax]εmax

(assuming that a maximum value εmax exists such that εmax � |ε(x)|). Of course, it
is also necessary that 1 � J for uJ(x) not to be trivial.

The left-hand plots of figure 14 show the signals with some added noise corre-
sponding to εmax = 0.1 (current experimental hot-wire probes have a typical accu-
racy of the order of 1%). Figure 14a corresponds to the case of figure 7a, figure 14c
to a spiral accumulation with D′

K = 0.5, and figure 14e to a compounded signal
obtained by placing spiral accumulations on a Cantor set. In the right-hand plots
of figure 14, we report measurements of DJ

E, Dmeas
E against DE. Specifically, in fig-

ure 14b, d, f , we plot rDEME(r), rDEMJ
E (r) and rDEMmeas

E (r). The lowest curves
in these right-hand plots correspond to rDEME(r) (no noise), the uppermost curves
to rDEMmeas

E (r), and intermediate curves with intermediate slopes to rDEMJ
E (r).

Note that in all the cases of figure 14, the value of rDEMJ
E (r) is, at the largest scales,

the same for all
J < [(umax − umin)/(umaxεmax)].

This observation supports the claim that the extra zero-crossings in the wavelet
plane introduced by the very construction of uJ(x) do not affect the r dependence
of MJ

E (r) for r > rJ
min. In figure 14b, we plot rDEMJ

E (r) for the signal in figure 14a
for different values of J . In this case,

[(umax − umin)/(umaxε)] = 3.7,

and, indeed, a loss in precision is observed for J > 3. The signal without noise
has an eddy capacity DE = 0.7, whereas, due to the noise, the signal of figure 14a
has an eddy capacity equal to 1. In figure 14f , we plot rDEMJ

E (r) corresponding to
figure 14e for different values of J . In this example,

[(umax − umin)/(umaxεmax)] = 20,
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Figure 14. Control of the effect of noise on DE.

and we can draw the same conclusion as with the signal of figure 14a, though here,
DE = 0.83. For the signal in figure 14c, it turns out that DJ

E is not constant over an
interval of J but we do observe, nevertheless, that ME(r) � MJ

E (r) � Mmeas
E (r). In

this case,
umax − umin

umaxεmax
= 20,

and DE = 0.3. This analysis of these three topologically different intermittent sig-
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Table 2. Main characteristics of the two experimental signals from Modane

figure Reλ resolution η (m) η (s) λ (m) λ (s) u′ (ms−1)

12a 835 2η 1.40 × 10−4 2.01 × 10−5 7.8 × 10−3 1.20 × 10−3 1.65
12b 3050 1.2η 3.5 × 10−4 1.75 × 10−5 3.85 × 10−2 1.93 × 10−3 0.8

1
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0.001 0.01 0.1 1

jet
grid

0.1

1

10

1 10 100 1000

(a) (b)

10510−410−5 104

Figure 15. (a) r0.11F (r) as a function of r for jet and grid turbulence. (b) k−5/3E(k)
(dashed line) compared with r0.11F (r) as a function of 1/r for case 12b.

nals with noise confirms our expectation that DE � DJ
E � Dmeas

E , and that our
measurement of DJ

E on the basis of the intermediary signal uJ(x) leads to significant
improvement of the measurement of DE by yielding an upper limit DJ

E less affected
by the noise and smaller than Dmeas

E .
We now apply this method to two high-resolution one-point turbulent velocity

signals obtained by Y. Gagne and his team in Grenoble (see Arneodo et al . 1996).
The first experimental signal was measured in a jet, its Reynolds number based
on the Taylor microscale is Reλ = 835 and its resolution is 2η, where η is the
Kolmogorov length-scale. The second experimental signal was measured in a grid
turbulence and has a higher Reynolds number (Reλ = 3050) and a higher resolution
(1.2η). These signals are referred to as 12a and 12b throughout this paper. Their
main characteristics are given in table 2.

Figure 15a shows the curve F (r) as a function of r for both signals. One can
observe a range of scales where F (r) ∼ r−0.11. Figure 15b shows that E(k) ∼ k−5/3

(E(k) is the energy spectrum and k the wavenumber) and F (r) ∼ r−0.11 are valid
over the same range of scales. If an inertial range of scales exists, this range should
be it, and we observe that it lies one or two decades above η for Reλ = 3050.

We measure DJ
E for the two experimental signals in figure 12a, b, and assume that

we can extend to these cases the result DJ
E < Dmeas

E . Supporting this assumption,
we find that the eddy capacity DJ

E is independent of J in the range 3 < J < 9. The
value of DJ

E is the same for all values of J between 4 and 8, but this value is defined
over a range of scales that grows as J increases from 4 to 8. When J � 9, the noise
is abruptly retrieved, and DJ

E = 1 = Dmeas
E over the entire range.

Figure 13b shows rDJ
EMJ

E (r) as a function of r in the cases of jet and grid tur-
bulence; eddy capacities are clearly well defined over nearly two decades. The eddy
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capacity measured as a least-squares value over this range of scales is 0.94 (±0.01)
for both jet and grid turbulence. J = 8 gives the smallest scale down to which we
can measure DJ

E, and figure 13b shows that this inner scale is 1.6λ in the present
datasets. This method gives no information about the dissipation range (r � λ).

It is interesting to note that DJ
E and q are well defined over approximately the same

range of length-scales, and that, because q ≈ 0.11 and DJ
E ≈ 0.94 for 3 < J < 9,

q + DJ
E ≈ 1.05 and

q + DE � 1.05

(to compare with (2.6)). Note also that DE is clearly different from 1, and, therefore,
neither the jet nor the grid turbulence can be modelled by signals such as that in
figure 3, described in Benzi et al . (1993).

5. Conclusion

In this paper we have introduced a distinction between two topologically different
types of intermittency: isolated and non-isolated.

Whereas the scalings of power spectra and second-order structure functions are
influenced and sometimes even determined by the Kolmogorov capacity D′

K of the
zero-crossings of the signal (Vassilicos & Hunt 1991; Hunt & Vassilicos 1991), the
scalings of higher-order structure functions, and, in particular, that of the flatness
factor, are often determined by the eddy capacity DE of the signal, that is the
Kolmogorov capacity of the zero-crossings of the second derivative of the signal.
The capacities DE and D′

K are, in general, different. The eddy capacity is a direct
measure of the geometry of intermittency. Non-intermittent signals are such that
F (r) = const. and DE = 1, but the Kolmogorov capacity D′

K of their zero-crossings
can take any value between 0 and 1; and if their power spectrum E(k) ∼ k−2p,
then the power 2p is also insensitive to DE = 1, but is influenced and, in fact, often
determined by D′

K (the relationships between D′
K and 2p are discussed in many of

the references cited at the end of this paper). The eddy capacity of intermittent
signals can, however, determine the scaling of the flatness factor, and we find that

F (r) ∼ r−q, with q + DE = 1,

for a broad class of intermittent signals of both the isolated and the non-isolated
topological types. The Kolmogorov capacity D′

K does not affect the scaling of the
flatness factor except, of course, somehow indirectly, in the cases where D′

K = DE.
Examples where D′

K = DE are pictured in figure 4a, b, and examples where D′
K 	= DE

are pictured in figures 1 and 7.
The results of our one-point turbulence data analysis indicate that inertial-range

intermittency at high Reynolds numbers is such that DE = 0.94 and F (r) ∼ r−0.11

both for grid and jet turbulence. Inertial range turbulence is, therefore, intermittent,
albeit weakly so, and signals such as those of figure 1 are, therefore, not good models
of turbulence fluctuations. Furthermore,

q + DE � 1.05,

in the inertial range of high-Reynolds-number turbulence.

We are grateful to Yves Gagne for providing the turbulence datasets, and gratefully acknowledge
financial support from the Royal Society and EPSRC grant GR/K50320.
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Appendix A. DE and D′
K

The eddy capacity DE is a number between 0 and 1 and is a measure of how space
filling eddies are in real space, whereas the Kolmogorov capacity D′

K of the zero-
crossings of the signal u(x) itself characterizes the distribution of energy among
wavenumbers in Fourier space (Kevlahan & Vassilicos 1994). There is no general
direct relation between D′

K and DE. As can be seen from (2.4), DE influences the
scaling of moments of order n > 2. Instead, D′

K affects the scaling of second -order
structure functions and power spectra. Indeed, the power spectrum E(k) of self-
similar signals u(x) with a well-defined D′

K is given by (Vassilicos 1992),

E(k) ∼ k−2+D′
K−2σ, (A 1)

where σ is a scaling exponent characterizing local magnitudes of u(x). For example, in
the case of an on–off scalar field, such as may occur when the molecular diffusivity is
very much smaller than the kinematic viscosity, σ = 0 (Vassilicos & Hunt 1991), and
for signals u(x) = xs sinx−t, D′

K = (t/(t+1)) and (A 1) is valid with σ = s(1−D′
K),

provided that −1 � 2s � t (see Kevlahan & Vassilicos 1994).
To summarize, the relevant geometrical scaling parameter for the description of

intermittency is DE and not D′
K; firstly, because F (r) ∼ rDE−1, whereas D′

K affects
only second- and not higher-order structure functions; and, secondly, because, as
shown by Kevlahan & Vassilicos (1994), DE is a measure of how space filling eddies
are in real space, whereas D′

K is a measure of how evenly or unevenly the energy is
distributed among wavenumbers in Fourier space.
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